MikroElektronika white logo
  • Products
    • Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • NECTO
      • NECTO Studio
    • Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • My profile
  • Privacy settings
  • Activity
  • Sign out

Your shoppingcart is empty.
Continue shopping.

MikroElektronika white logo
  • Products
    • click boards icon Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • necto icon NECTO
      • NECTO Studio
    • compilers icon Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • dev boards icon Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • starter boards icon Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • prog-debug icon Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • smart displays icon Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • mcu cards icon MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • accessories icon Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • kits icon Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • Price :

    More info
Reset filter
  • 0
Authentication
Account

Create account

Forgot your password?

Your cart is empty !
View cart ( )
  1. Home
  2. Blog
  3. IoT will grow by multiple collaboration of a large number of stakeholders, says Ivan Rajkovic, Head of Software at Mikroe

IoT will grow by multiple collaboration of a large number of stakeholders, says Ivan Rajkovic, Head of Software at Mikroe

Published: 11/03/2019 |

| Views:1696

IoT will grow by multiple collaboration of a large number of stakeholders, says Ivan Rajkovic, Head of Software at Mikroe

 

Over the last few months, we’ve witnessed and participated in many talks about the Internet of Things (IoT). The industry seems to be knee-deep in the development of a smarter-operating world. We can see that plenty of companies see the advantages of IoT and starting to engage as producers in the loop.

 

Our Head of Software, Mr. Ivan Rajkovic, agreed to share his perspectives on the topic, so we’ve arranged an interview to discuss these in depth.

 

This interview has been edited and condensed for clarity.

 

Interviewer: Can you tell us a bit about the IoT in general, what it is and what is its current status?

 

I.R.: My impression is that “IoT“ has appeared as a proper term at the same time when the term “Cloud Computing” has. In a nutshell, IoT has appeared after the majority of the world population has connected to the Internet via personal computers or mobile devices. The term has appeared in the late ’90s, however, the way we use it is around for about 4 years or more.

 

The very start of IoT for Mikroe was creating the hardware and software solution for the Wunderbar project. That was the time when globally – the whole idea was still not defined.

 

So, my impression of IoT was that at first, we had billions of people who were accessing the Internet on a daily basis. I suppose that at some moment of clarity, someone’s gotten an idea – if you already have all those people connected, why not have devices connected, too?

 

Easier said than done - in order to connect a device to the Internet, there are several challenges. The first challenge is that the device needs to be at least a little bit „smart“, and connectable – it should be able to communicate with the applications over the Internet (or with a human, we don’t have to be excluded from this loop). Besides, it needs to have security, so that communication does not get misused. The most common case is that the devices collect data for the sake of information. Or, for performing some pre-set commands (e.g. to turn something on/off). Since the time when the initial idea appeared, many large companies have joined. Also, cloud computing has gotten tied with the smart devices which can connect to the Internet in the meantime, and many new kinds of communication appeared. Now it’s not limited to WiFi or GSM only -- there are also others, optimized for a small transmission of data (LORA, Sigfox, etc.).

 

Interviewer: What was the challenge?

 

I.R: The challenge was in the fact that there are far more „things“ than people, and their potential use is far wider than the way people use the Internet. The very system and way of use of the Internet has changed and now is the time to develop that other way of use.

 

Interviewer: Can you tell us about some example of IoT use which has impressed you?

 

I.R: In a nutshell, the condition that has impeded the quicker spreading of IoT is that its use is neither simple nor unambiguous. You can’t just say: this is how you use IoT. In the beginning, the IoT was a mere possibility, and then the idea was to devise its application. Keep in mind that, at that time, it was most commonly done through investments, so the riskiness was another issue. That, plus the standardization which doesn’t exist even today, were (and are) preventing the IoT from gaining a larger number of users.

 

The IoT comprises of multiple „layers“, such as the hardware, firmware, communication, cloud, PC app, mobile app, and then comes the layer of its usability. A typical, simple example of a use for a regular, individual user, would be the home automation. Let’s say a user wants to track indoor temperature, humidity, whether the windows are open -- a sort of monitoring the home status for energy efficiency sake, or for alarm systems (as they can also be covered by the IoT). There are many, many things that can be advanced by IoT, but the basic problem of it is that a number of technologies need to cooperate, to be able to provide such a service that an end user could utilize them via a web browser or a phone app, either to direct the system or follow its status.

 

When we talk about the industry, the buzz word is predictive maintenance. The predictive maintenance further promotes the IoT potential to be used everywhere. Wherever a machine is installed, you can place all the data-collecting sensors you need. Then, send the data in real-time to a shared server or something similar, which will, in turn, send signals to another machinery saying which specific parts of it are prone to malfunction in the future. All of it makes the maintenance cheaper. These are, of course, huge systems, and their transition from one kind of technology to another, whether it’s a city or a big company, is limited for the very reason of vastness. Much work needs to be done and the machines fine-tuned so the IoT could be set successfully up.

 

Interviewer: The IoT is the relatively new field of industry. It has uncertain (or uncemented) paths toward its realization, as the technologies are still developing. Is it profitable to invest in cost-reduction before taking care of its legal regulation?

 

I.R: That, too, is one of the IoT challenges, just as the Internet is facing. First of all, safety is the key feature whenever we talk about any kind of sales aspect of IoT projects intended for companies. It’s not like people are avoiding this issue. People are really invested in security, but in regards to standardization and planning you’ve mentioned, there are two problems. First of all, the regulations cannot develop as fast as the technology, and second, IoT is not state-governed. Let’s keep in mind that it’s often multi-national (so no one country is designated to oversee it). Can the legal framework of all the countries fit the needs of the IoT industry, and can something as complex and high-level, be coordinated? I think it will be similar to artificial intelligence. The legal regulations will even in the most developed countries be slower than the technology and development. It will be reduced to the care of the tech companies – which will make sure that the things are done properly before anyone manages to standardize IoT security and make normative by which all the companies will have to work.

IoT Smart City Mikroe

Interviewer: Let’s say there’s a system which is IoT-ized and to which people get accustomed to. It brings a new sense of comfort and relieves them from having to think of certain things – for example, public transportation. Let’s say it starts working so well that people don’t even think about how come it’s that efficient. But there’s no authority beside the company interest, or potential profit loss, which could prevent the misuse. What happens in the case it stops working well so that it causes damage to a system as a whole? Who would be responsible, and what could happen to us in case the scale of misuse is huge so that the whole city infrastructure collapses?

 

I.R: These are two questions. One question is philosophical and ethical in nature, and it extends the limits of technological and technical. Technology has its own path, which is rather guided by the needs of society than by any ethical or moral codex, especially so because none of them are universal, applicable to all.

 

I believe that it’s in the best interest of companies that IoT succeeds so that it establishes their dominance on the market. It is a new market in every sense - from the devices to the services. Seen from that perspective, I don’t see the issue of whether or not it will be safe and functional. Can it be misused? Well, of course, just like everything else. Just as an airplane can be both the transportation vehicle and the atomic bomb carrier – so just like any other technology, the IoT has its two sides of the coin. In its essence, the IoT is a good idea in the sense of all the good that can be achieved by it. What is challenging with it, and if it gets implemented any time soon, is the need for acquiescence and standardization which are immanent to the IoT process.

 

We’ll see what are the different paths companies will try to take in order to solve this problem. In my personal opinion, the only way for it to be solved is at the level of multiple collaboration of a large number of stakeholders. I don’t expect that a single company will be able to master all the elements of IoT, thus becoming absolutely dominant in every segment. The companies are interdependent, as it is difficult to have all that is needed in the same place: the communication channels, device manufacturing, the market...

 

IoT is a broad phenomenon, multifaceted and quite interdependent, which is good, on one hand: it will not allow some abnormally rapid progress which could take it to unwanted place. On the other hand, it’s not-so-good because there will probably be many missed chances and failed attempts.

 

Interviewer: What is the status quo, what are the concrete elements and technologies involved? What has been achieved so far, and what are the main challenges, issues, and tendencies?

 

I.R: The biggest problem is that there are still no simple, out-of-the-box solutions for end users. There are certain attempts to make these, but the fact is: it’s not cheap to play around it, nor easy to use, or readily available. It still asks for a large number of different technologies to work together and a number of experts to make it work properly.

 

Interviewer: Which technologies need working together, for example?

 

I.R: For example a custom device - which means you’d need hardware engineers with the knowledge in electronics. Then, you’d need a software engineer who will work on software for the embedded hardware, which will, again, be optimized. Then, in most cases these devices are battery-charged, so the energy efficiency needs to be high. Further communication with the gateway, and even further with a cloud, is an issue alone, and it depends on the use-case. The cloud itself involves a separate technology, its deployment is questionable, its price scaling. Even when all the channels are open and data is collected, there need to be the programmed applications which are at the level of web technology, or desktop, or mobile app... In one word, they should provide certain services which will correlate to the user’s needs.

 

It’s important that there’s a clear picture, a plan what you want to achieve and how to make such a complex and expensive system pay off to users, as well.

 

Interviewer: What about the security? Does the IoT need both hardware and software security?

 

I.R: The security comes by default, whenever we are talking about data sending. It should not be implied as a default, but to a certain extent it is – just look at how we do bank transfers via the internet... So it’s not really a new topic.

 

And to your second question: yes. Although, there’s an option to update the device behavior through the so-called over-the-air update such as the one that Tesla uses for their vehicles. The over-the-air update means a simple change in the behavior of the end device at an unknown address, as it is in the case of cars. All you need is WiFi or some other connection. But what does it mean? It means that security has gotten very complex. Imagine not securing the data such as the firmware updates (development of which has cost quite a bit – so it has to be very secure). Or, if you have the option of turning a device on/off, or collecting data which you don’t want to be public - the security for these features can be attacked at every single step. From the device itself to gateway, etc. There are many layers of security involved, and the borders between hardware and software security are more and more erased.

 

The three key terms at the Microchip Masters last summer (2018) were:

 

SMART, CONNECT, SECURE.

 

The security which was done in older days as pure software is now transferred to chips, which are made more robust and better protected. Even the technologies which used to be employed for dumping the firmware from chips cannot be so easily deployed anymore. It’s a constant struggle because there will always be someone trying to use the weakness of the current state of security, and the others who will try to improve the security. The security will always be dynamic – it is a crucial element to it.

 

When we talk about security, there is also the question of what is IoT for, and how it’s used. Yet another level of complexity is the risk-assessment and the level of security that needs to be applied to a system. Not all systems need the same protection. Let’s say, measuring the outdoor temperature in front of a home can be an interesting thing to monitor, this essentially does not contain data that needs abnormal security.

 

Another problem with IoT is that there is still a small number of people who are experts on this topic. Security is at the moment very expensive, which is why not everyone can develop. So, many will have to lean on the ready, project-based solutions. Many big companies have recognized IoT as the hot thing on the market, not just in the form of service-selling for regular use, but also as selling the service to those who create the IoT – the enablers of IoT.

 

Ivan Rajkovic talk Mikroe IoT

 

Interviewer: Do you think now is the time when the industry develops more toward the end user, home smartification, easier living, or more toward the large-system management, industrial needs, producers, etc..? Where do you think the most of investment goes momentarily? Can we even tell?

 

I.R: I could not speak with certainty about this. However, my impression is based on the frequently repeated topics – just as you said, home automation, agriculture, industry. From the most basic use cases to the advanced, high-end ones. It’s a broad front where currently it doesn’t seem like anything is taking over.

 

Interviewer: There’s no segmentation of the market?

 

I.R: Well, that’s right. There seems to be no determining peak which shows whether IoT is going more toward industry, home automation, smart city or agriculture. There are people everywhere who are dealing with IoT. As we’ve been saying over and over, IoT has an incredibly wide range of uses, and it’s complex and layered. The only goal for everyone is to make it simple to use.

 

Amazon’s Alexa – which is an IoT device (in a broader sense). The industry is aware of the end goals of users, and that the devices should be conformed to the users. In cases when it’s smart-home related, the idea will be that the maintenance is minimal, the installing absolutely simple – nothing more than unboxing and placing. So I can imagine that in the end, like with all the technologies, it will be simplified to the point when the wide population will be able to use it. It just seems that the road will be a bit bumpier than it was for the technologies up until now.

 

Interviewer: And it’s still quite fresh with the industry, it’s difficult to tell...

 

I.R: I think that the expectations were a bit hyped, and definitely the speed of realization of IoT didn’t match them.

 

IoT has spread quite a lot and many things are happening. A lot of work is being done. I expect that the assimilation of IoT into our daily lives and quality of living is not going to be revolutionary as some like to put it (that IoT will be a new industrial revolution) – but rather evolutionary.

 

Maybe by the ultimate results expected – it can be called revolutionary, but considering the way it’s being realized, it is an evolution rather than revolution. A huge number of trial and error fails, assembling different solutions, slow findings of what can work and what is needed by whom... So, considering a large number of elements which need to be involved, it is going to go in a more natural and slow way than usually the case with technology.

 

Interviewer: Do you have the impression that each individual company’s knowledge is being shared, or it tends to fit like a puzzle – let’s say one company has a piece of technology which fits to end product, and the companies keep their findings for themselves. Or, the idea is to create solutions which become standards everyone starts using?

 

I.R: I think all of it is happening, as it’s often the case with industry. There are parts which are shared, there are parts which aren’t shared for the sake of competitiveness, and there are parts for which there’s a clear intent to be standardized – as everyone will benefit from it. And there are companies which are trying to do stuff completely on their own, sometimes in a different way, counting on the effect of them arriving there before the others do. IoT is a world phenomenon, and as such, it has a kind of a social character – it does depend on a huge number of people, not only technologies. What are all the things that will happen? No one knows, except that things will happen. I highly doubt that someday the conclusion will be that it was a blind alley, too expensive or wrong, so yes, I do believe IoT will be implemented.

 

Interviewer: Could we mention some major players, who will propel IoT? Amazon, of course... who else?

 

I.R: Amazon, Microsoft, but these are not some revolutionary discoveries.

 

Interviewer: And someone unexpected?

 

I.R: Well, if there are some, they are still exactly what you’re saying: unexpected, with a local impact. There are companies which are dealing with IoT from various perspectives. Probably there are also companies which are developing something similar (which is not IoT at all), but they are developing it for their own business processes, so after they develop it they can offer it to others. The best example for that is Bosch. They’ve developed a cloud for their internal use (at least that’s what I know), and then started to offer it as a service. So, Bosch was unexpected with it. I believe there’ll be many surprising things like that, and probably even some things which a person cannot even imagine, let alone predict.

 

Interviewer: All in all, you seem to be optimistic – that the IoT application can be not only profitable but generally seen as an improvement for the humankind?

 

I.R: Can the IoT be a win-win type of situation? Yes, it can. Will it be? It’s an ongoing question. Even when seen from the perspective of interest only, other companies have an interest that it becomes a success, simply because that way it will be possible to advance faster. And can IoT be misused? Of course. The same as the internet gets misused, but we’re still better off having it. I believe we are on the path which will surely take us to a realization of a completely different society. How will it affect people on a collective and individual level, is very difficult to predict. IoT will most certainly reduce the energy spending, enhance efficiency, and by recognizing patterns in combination with AI make the overall functioning of the world as a system – easier and better.

 

We are doing our bit in this wonderful race called IoT development. Learn more about Mikroe Click Cloud solution.

Click Cloud IoT solution Mikroe

Share this post

MIKROE

MIKROE is a development tools company dedicated to standardization and time-saving in the embedded industry.

  • About us
  • Success story
  • Contact
  • PressKit
  • Timeline
  • Partners
  • Legal
  • Distributors
  • Legacy Products

SOLUTIONS

  • Click boards™
  • Development boards
  • Mikromedia
  • CODEGRIP
  • NECTO Studio
  • Planet Debug
  • ClickID
  • Click Snap
  • EmbeddedWiki

SUPPORT

  • Helpdesk
  • Forum
  • Libstock
  • Learn
  • Let's Make
  • eBooks
  • Premium TS
  • Design service
  • Product Customization
  • Contract Manufacturing

STANDARD

  • mikroBUS™
  • mikroSDK
  • SiBRAIN
  • DISCON

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano trĹľište. Da li Ĺľelite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano trĹľište. Da li Ĺľelite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Daily product releases, special offers, and more

  • FOLLOW US:

  • instagram
  • linkedin
  • facebook
  • github
  • newsletter
  • youtube
  • twitter twitter

Join us

PridruĹľi nam se

Careers
Internship
Posao
Praksa
Copyright© 2025 MikroElektronika d.o.o.

Privacy