4.2.2. FM Receiver with TDA7088T IC
The receiver described in the last project has two IC’s, one variable capacitor, two small coils and fairly small few other components, so it can be put into some small box, by carefully placing the components. Further miniaturization can be accomplished by using the SMD components. These are the resistors, capacitors, transistors, IC’s and other components, whose dimensions are significantly smaller than these of “classical” components. They are mounted on the copper side of the PCB, therefore it isn’t necessary to drill the holes on the board. TDA7088T is also an SMD component. Its drawing is shown on Pic.4.10.
This IC is the successor of the famous TDA7000, i.e. it is an improved model of TDA7000, that allows to implement both monophonic and stereophonic FM receiver. The basic features of TDA7088T are given in the following table.
The electronic diagram of the HF part of the monophonic FM receiver made with TDA7088T IC is given on Pic.4.11. The IC contains all the parts of the classic superheterodyne receiver: the local oscillator, IF amplifier and FM detector, but also some other circuits that extend the possibilities and improve the features of this IC.
As far as practical use is concerned, the most significant novelty is the auto-tuning circuitry. No variable capacitor is necessary for tuning, as it was in all the previous projects, the BB910 varicap diode is used instead. Its capacitance is being changed by varying the DC voltage supplied to its anode over the 5k6 resistor. This is how the tuning is performed: When the user press and releases the pushbutton marked with “RUN”, the positive voltage impulse is released to the S(et) input of the SEARCH TUNING circuit. The 100 nF capacitor then starts chargingl and the voltage on the pin 16 increases. This voltage is then transferred, over the 5k6, to the anode of the BB910, causing its capacitance to decrease, which increases the frequency of the local oscillator (VCO). The VCO voltage is led into the mixer (MIXER) which also receives, over pin 11, the signals of all the other FM stations. The mixer outputs the FM signals whose frequencies are equal to the differences of the oscillator and the original station frequency. The only signal that can reach the demodulator (FM detector) is the one whose carrier frequency is equal to the inter-frequency, i.e. fm=73 kHz (selectivity is being accomplished by two active filters whose components are the capacitors connected to pins 6, 7, 8, 9 and 10). Therefore, the oscillator frequency increases until it gets the condition fO-fS=73 kHz is accomplished. When this happens, the charging of the capacitor is halted by the command that is sent into the SEARCH TUNING circuit by two detectors (diode-blocks) located in the MUTE circuit. The AFC (Automatic Frequency Control) circuit now gets its role and prevents the voltage on pin 16 to be changed, until the RUN button is pushed again (this voltage can vary from 0 V til 1.8 V during the tuning).
When the RESET button is pushed, the 100 nF capacitor is discharged, the voltage on pin 16 drops down to zero, and the receiver is set to the low end of the reception bandwidth, i.e. 88 MHz.
Let us get back to the mixer. On its output, the 73 kHz FM signal is obtained, and it is modulated by the programme of the first station that is found after the RUN button is pushed. This signal then passes the active filters, gets amplified in the IF amplifier (IF LIMITER) and passed onto the input of the demodulator. By connecting the demodulator exit, over the LOOP FILTER, the adder (+) and resistor, to the VCO, the so-called FFL (Frequency Feedback Loop) circuit is accomplished, reducing the deviations of the signal being received from ±75 kHz to ±15 kHz.
The LF (AF) signal is led from the demodulator, over the LOOP FILTER stage, the invertor (-1) and MUTE circuit onto the pin 2. The detectors (diode-blocks) control the operation of the MUTE circuit, preventing the LF (AF) signal to reach the output pin (2) until the tuning on the station that creates the signal in the antenna that is strong enough for quality reception is obtained.