MikroElektronika white logo
  • Products
    • Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • NECTO
      • NECTO Studio
    • Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • My profile
  • Privacy settings
  • Activity
  • Sign out

Your shoppingcart is empty.
Continue shopping.

MikroElektronika white logo
  • Products
    • click boards icon Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • necto icon NECTO
      • NECTO Studio
    • compilers icon Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • dev boards icon Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • starter boards icon Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • prog-debug icon Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • smart displays icon Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • mcu cards icon MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • accessories icon Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • kits icon Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • Price :

    More info
Reset filter
  • 0
Authentication
Account

Create account

Forgot your password?

Your cart is empty !
View cart ( )
  1. Home
  2. ebooks
  3. Programming dsPIC MCUs in C
  4. 14-2-1-example-1-menu
MikroElektronika books

14.2.1 Example 1 – Menu

The example shows a method of formation of a menu with options on an LCD in 4-bit mode. Setting of bit 1 on port F means go to the next option, whereas setting of bit 0 on port F means go to the previous option. The rate of transition to the next/previous option is limited so the maximum of 4 transitions per second is allowed.

/* This project is designed to work with PIC P30F6014A. It has been tested
 on dsPICPRO3 development system with 10.0 MHz crystal and 8xPLL.
 It should work with any other crystal.
 Note: the maximum operating frequency for dsPIC is 120MHz.
 With minor adjustments, this example should work with any other dsPIC MCU */

signed short menu_index;
char menu[5][7] = {"First" , // Menu items
 "Second",
 "Third" ,
 "Fourth",
 "Fifth" } absolute 0x1880;
 // Directive absolute specifies the starting address
 // in RAM for a variable.

void main() {
 ADPCFG = 0xFFFF; // Configure PORTB as digital
 TRISF = 0xFFFF; // Configure PORTF as input (menu control)

 menu_index = 0; // Init menu_item[0]

 // Init LCD in 4-bit mode for dsPICPRO3 board
 Lcd_Custom_Config(&PORTD, 7,6,5,4, &PORTB, 4,0,6);
 Lcd_Custom_Cmd(LCD_CURSOR_OFF);
 Lcd_Custom_Cmd(LCD_FIRST_ROW);
 Lcd_Custom_Out(1,1,"Menu :");

 Lcd_Custom_Out(1,8,menu[menu_index]); // Show menu element on LCD

 while (1) { // endless loop
 if (PORTF.F1 == 1) { // Detect logical one on RF1 pin => MENU UP
 menu_index = menu_index + 1; // Next index in menu
 if (menu_index > 4)
 menu_index = 0; // Circular menu
 Lcd_Custom_Out(1,8, " "); // Clear text
 Lcd_Custom_Out(1,8,menu[menu_index]); // Show menu element on LCD
 Delay_ms(250); // No more than 4 changes per sec
 }

 if (PORTF.F0 == 1) { // Detect logical one on RF0 pin => MENU DOWN
 menu_index = menu_index - 1; // Previous index in menu
 if (menu_index < 0)
 menu_index = 4; // Circular menu
 Lcd_Custom_Out(1,8, " "); // Clear text
 Lcd_Custom_Out(1,8,menu[menu_index]); // Show menu element on LCD
 Delay_ms(250); // No more than 4 changes per sec
 }
 }
}
 

14.2.2 Example 2 – DTMFout

The example shows a method of generation of DTMF signal. The following assumptions have been adopted:
  • the level of the signal of the higher frequency is 0 to 3dB higher compared to the signal of the lower frequency,
  • transmission of one character lasts 90ms, the pause between two characters is 200ms,
  • the sampling frequency is 20kHz,
  • input data are sent to the microcontroller via the UART module at the rate of 9600 bps,
The algorithm of generating the signal is the following. On the basis of the calculated frequencies the square signal is sent first. Then, this signal is filtered by a low pass IIR filter of the third order (4 coefficients). The output signal specifications are:
  • frequency deviation is less than 1.5%,
  • the level of all harmonics is 20dB below the useful signal.
The algorithm is shown in Fig. 14-1. dspic-microcontrollers-programming-in-c-chapter-14-image-1
Fig. 14-1 Algorithm for generation of DTMF signal
Digital filter is lowpass Chebyshev type 1 filter. Wp is 1700 Hz, Ap is 3dB, sampling frequency is 20kHz. Third order fiter can meet the requirements: a) level of all harmonics is 20dB below the useful signal: Harmonic nearest to the useful signal is 3xf1. f1 is lowest frequency of useful signal, f1=697 Hz. Fourier series of square wave signal implies that amplitude of 3xf1=2091 Hz harmonic is 1/3 of f1signal amplitude. So we already have -9.5dB. In IIR frequency window we can see that 3xf1 frequency is 12dB weaker than useful signal. The most critical harmonic 3xf1 is -9.5dB -12dB = -21.5dB weaker than useful signal – so this requirement is fullfilled. b) the level of the signal of the higher frequency is 0 to 3dB higher compared to the signal of the lower frequency: IIR frequency window also shows that low frequencies 697-941Hz filter attenuation is in -3dB to -2.8dB range and low frequencies 1209-1633Hz filter attenuation is in –1.8dB to 0dB range. So any higher frequency signal is 1 to 3dB stronger than any lower frequency signal. dspic-microcontrollers-programming-in-c-chapter-14-image-8
Filter Designer Tool Window 1.
dspic-microcontrollers-programming-in-c-chapter-14-image-9
Filter Designer Tool Window 2.
Fig. 14-2 shows the generated signal. The signals of the lower and higher frequencies are added, with the higher frequency signal 3dB above the lower frequency signal. dspic-microcontrollers-programming-in-c-chapter-14-image-2
Fig. 14-2 Generated signal.
dspic-microcontrollers-programming-in-c-chapter-14-image-3
Fig. 14-3 Spectrum of the signal of Fig. 14-2
dspic-microcontrollers-programming-in-c-chapter-14-image-4
Fig. 14-4 Filtered signal
dspic-microcontrollers-programming-in-c-chapter-14-image-5
Fig. 14-5 Spectrum of the signal after filtering (output signal)
For generation of the filter coefficients use the Filter Designer Tool which is a constituent part of mikroC for dsPIC. The program for generation of the described signal is as follows:
/* This project is designed to work with PIC P30F6014A. It has been tested
 on dsPICPRO3 board with 10.0 MHz crystal and 8xPLL. It should work with any
 other crystal. Note: the maximum operating frequency for dsPIC is 120MHz.
 With minor adjustments, this example should work with any other dsPIC MCU

 On-board DAC module
 Enable SPI connection to DAC on SW4 and DAC's Load(LD) and Chip Select(CS) pins on SW3.
 */

#include // to be used with spi_init_advanced routine

// *** Filter Designer Tool outputs *** //
const unsigned int BUFFER_SIZE = 8;
const unsigned int FILTER_ORDER = 3;
const signed int COEFF_B[FILTER_ORDER+1] = {0x21F3, 0x65DA, 0x65DA, 0x21F3};
const signed int COEFF_A[FILTER_ORDER+1] = {0x2000, 0xB06D, 0x47EC, 0xE8B6};
const unsigned int SCALE_B = 6;
const unsigned int SCALE_A = -2;

// *** DAC pinout *** //
const char CS_PIN = 1; // DAC CS pin
const char LOAD_PIN = 2; // DAC LOAD pin

unsigned int THalf_Low, THalf_High; // half-periods of low and high-frequency 
 // square signals
char char2send; // char recived from UART
unsigned int sample, sending_ch_cnt; // digital signal sample, sending char counter
unsigned int us_cntL, us_cntH; // low and high-frequency square signal 
 // microseconds counters
signed int input[BUFFER_SIZE]; // filter input signal (two square signals)
signed int output[BUFFER_SIZE]; // filtered signal
unsigned int sample_index; // index of current sample
signed int voltageL, voltageH; // square signals amplitudes

void InitMain() {

 LATC.CS_PIN = 1; // set DAC CS to inactive
 LATC.LOAD_PIN = 0; // set DAC LOAD to inactive
 TRISC.LOAD_PIN = 0; // configure DAC LOAD pin as output
 TRISC.CS_PIN = 0; // configure DAC CS pin as output

 // Initialize SPI2 module
 Spi2_Init_Advanced(_SPI_MASTER, _SPI_16_BIT, _SPI_PRESCALE_SEC_1, _SPI_PRESCALE_PRI_1,
 _SPI_SS_DISABLE, _SPI_DATA_SAMPLE_MIDDLE, _SPI_CLK_IDLE_HIGH,
 _SPI_ACTIVE_2_IDLE);


 Uart1_Init(9600); // Initialize UART1 module
}

void DAC_Output(unsigned int valueDAC) {
 
 LATC.CS_PIN = 0; // CS enable for DAC
 // filter output range is 16-bit number; DAC input range is 12-bit number
 valueDAC = valueDAC >> 4;
 // now both numbers are 12-bit, but filter output is signed and DAC input is unsigned.
 // Half of DAC range 4096/2=2048 is added to correct this
 valueDAC = valueDAC + 2048;
 SPI2BUF = 0x3000 | valueDAC; // write valueDAC to DAC (0x3 is required by DAC)
 while (SPI2STAT.F1) // wait for SPI module to finish sending
 asm nop;
 LATC.CS_PIN = 1; // CS disable for DAC
}

void SetPeriods(char ch) {

/* DTMF frequencies:

 1209 Hz 1336 Hz 1477 Hz 1633 Hz
 697 Hz 1 2 3 A
 770 Hz 4 5 6 B
 852 Hz 7 8 9 C
 941 Hz * 0 # D
*/

 // Calculate half-periods in microseconds
 // example: 1/697Hz = 0.001435 seconds = 1435 microseconds
 // 1435/2 = 717
 
 switch (ch) {
 case 49: THalf_Low = 717; THalf_High = 414; break; //'1'
 case 50: THalf_Low = 717; THalf_High = 374; break; //'2'
 case 51: THalf_Low = 717; THalf_High = 339; break; //'3'
 case 65: THalf_Low = 717; THalf_High = 306; break; //'A'
 
 case 52: THalf_Low = 649; THalf_High = 414; break; //'4'
 case 53: THalf_Low = 649; THalf_High = 374; break; //'5'
 case 54: THalf_Low = 649; THalf_High = 339; break; //'6'
 case 66: THalf_Low = 649; THalf_High = 306; break; //'B'
 
 case 55: THalf_Low = 587; THalf_High = 414; break; //'7'
 case 56: THalf_Low = 587; THalf_High = 374; break; //'8'
 case 57: THalf_Low = 587; THalf_High = 339; break; //'9'
 case 67: THalf_Low = 587; THalf_High = 306; break; //'C'
 
 case 42: THalf_Low = 531; THalf_High = 414; break; //'*'
 case 48: THalf_Low = 531; THalf_High = 374; break; //'0'
 case 35: THalf_Low = 531; THalf_High = 339; break; //'#'
 case 68: THalf_Low = 531; THalf_High = 306; break; //'D'
 }
}

void ClearBufs() {
 //Clear buffers
 Vector_Set(input, BUFFER_SIZE, 0);
 Vector_Set(output, BUFFER_SIZE, 0);
}

void Timer1Int() org 0x1A { // interrupt frequency is 20kHz

 // calculate sample
 sample = voltageL + voltageH; // add voltages
 input[sample_index] = sample; // write sample to input buffer
 
 // update low-frequency square signal microseconds counter
 us_cntL = us_cntL + 50; // since us_cntL and THalf_Low are in microseconds
 // and Timer1 interrupt occures every 50us
 // increment us_cntL by 50
 if (us_cntL > THalf_Low) { // half-period exceeded, change sign
 voltageL = -voltageL;
 us_cntL = us_cntL - THalf_Low; // subtract half-period
 }
 
 // update high-frequency square signal microseconds counter
 us_cntH = us_cntH + 50;
 if (us_cntH > THalf_High) {
 voltageH = -voltageH;
 us_cntH = us_cntH - THalf_High;
 }
 
 //IIR(amp), filtering new sample
 sample = IIR_Radix(SCALE_B, SCALE_A, COEFF_B, COEFF_A, FILTER_ORDER+1,
 input, BUFFER_SIZE, output, sample_index);
 
 DAC_Output(sample); // send sample to digital-to-analog converter

 output[sample_index] = sample; // write filtered sample in output buffer
 
 sample_index++; // increment sample index, prepare for next sample
 if (sample_index >= BUFFER_SIZE)
 sample_index = 0;

 sending_ch_cnt--; // decrement char sending counter
 // (character transmition lasts 90ms = 1800 samples)
 if (sending_ch_cnt == 0) { // if character transmition is over
 T1CON=0; // turn off Timer1
 Delay_ms(200); // pause between two characters is 200ms
 }
 
 IFS0.F3 = 0; // clear Timer1 interrupt flag
}


// --- main --- //
void main() {

 InitMain(); // perform initializations

 sending_ch_cnt = 0; // reset counter
 sample_index = 0; // initialize sample index

 // Clear interrupt flags
 IFS0 = 0;
 IFS1 = 0;
 IFS2 = 0;
 
 INTCON1 = 0x8000; // disable nested interrupts
 IEC0 = 0x0008; // enable Timer1 interrupt
 
 // Timer1 input clock is Fosc/4. Sampling frequency is 20kHz. Timer should
 // raise interrupt every 50 microseconds. PR1 = (Fosc[Hz]/4) / 20000Hz = Fosc[kHz]/(4*20)
 PR1 = Clock_kHz() / 80;
 // Note: interrupt routine execution takes ~10us

 while (1) { // endless loop
 if ((sending_ch_cnt == 0) && // check if sending of previous character is over
 (Uart1_Data_Ready() > 0)) { // check if character arrived via UART1

 char2send = Uart1_Read_Char(); // read data from UART and store it
 SetPeriods(char2send); // set periods for low and high-frequency square signals
 ClearBufs(); // clear input and output buffers
 // digital filter computing error is smaller for signals of higher amplitudes
 // so signal amplitude should as high as possible. The highest value for
 // signed integer type is 0x7FFF but since we are adding 2 signals we must
 // divide it by 2.
 voltageH = 0x7FFF / 2; // high-frequency square signal amplitude
 voltageL = 0x7FFF / 2; // low-frequency square signal amplitude
 us_cntL = 0; // low-frequency square signal microseconds counter
 us_cntH = 0; // high-frequency square signal microseconds counter
 
 // start Timer T1
 sending_ch_cnt = 1800; // character tansmition lasts 90ms = 1800 samples * 50us
 T1CON = 0x8000; // enable Timer1 (TimerOn, prescaler 1:1)
 }
 }
}
 

14.2.3 Example 3 – DTMFin

The example shows a method of detecting DTMF signal. The following detection algorithm has been applied. The level of input signal denoting the presence of DTMF signal is awaited. Frequency estimation over 1024 samples is performed. The sampling frequency is 20kHz. In other words, the process of estimation lasts approximately 50ms. The minimum length of one character is 65ms. The minimum pause after one character is 80ms. For this reason each estimation is followed by an 80ms pause, and then the next character is awaited. The estimate of the signal frequency can be performed by counting zero crossings, as shown in Fig. 14-6. dspic-microcontrollers-programming-in-c-chapter-14-image-6
Fig. 14-6 DTMF signal before filtering
Before zero crossing estimation algorithm can be performed signal must be filtred to separate low frequency from high frequency. The signal is then put through a lowpass IIR filter of the 4th order having stopband corner frequency 1200Hz whereby all frequencies except the lower frequency are suppressed. By counting zero crossings of the filtered signal the estimation of the frequency of the lower frequency signal is performed. The signal is also put through a highpass IIR filter of the 4th order having stopband corner frequency 950Hz whereby all frequencies except the higher frequency are suppressed. The signal after filtering is shown in Fig. 14-7. dspic-microcontrollers-programming-in-c-chapter-14-image-7
Fig. 14-7 DTMF signal after filtering
By counting zero crossings of the filtered signal the estimation of the frequency of the higher frequency signal is performed. After the frequencies have been obtaind, the sent character is obtained simply by comparison. For generation of the filter coefficients one can use the Filter Designer Tool which is a constituent part of mikroC for dsPIC. Settings of Filter Designer Tool for LowPass and HighPass filter are given below: dspic-microcontrollers-programming-in-c-chapter-14-image-10
IIR lowpass filter settings
dspic-microcontrollers-programming-in-c-chapter-14-image-11
IIR lowpass frequency window
dspic-microcontrollers-programming-in-c-chapter-14-image-12
IIR highpass filter settings
dspic-microcontrollers-programming-in-c-chapter-14-image-13
IIR highpass frequency window
Implementation of the described algorithm:
/* This project is designed to work with PIC P30F6014A. It has been tested
 on dsPICPRO3 board with 10.0 MHz crystal and 8xPLL. It should work with any
 other crystal. Note: the maximum operating frequency for dsPIC is 120MHz.
 With minor adjustments, this example should work with any other dsPIC MCU
*/

#include <Spi_Const.h>

// *** DAC pinout *** //
const LOAD_PIN = 2; // DAC load pin
const CS_PIN = 1; // DAC CS pin



// filter setup:
// filter kind: IIR
// filter type: lowpass filter
// filter order: 4
// design method: Chebyshev type II
const unsigned int BUFFER_SIZE = 8;
const unsigned int FILTER_ORDER = 4;
const unsigned int BPF1_COEFF_B[FILTER_ORDER+1] = {0x1BD7, 0xAB5D, 0x753A, 0xAB5D, 0x1BD7};
const unsigned int BPF1_COEFF_A[FILTER_ORDER+1] = {0x2000, 0xA1C7, 0x6C59, 0xC6EA, 0x0BDE};
const unsigned int BPF1_SCALE_B = 0;
const unsigned int BPF1_SCALE_A = -2;
// filter setup:
// filter kind: IIR
// filter type: Highpass filter
// filter order: 4
// design method: Chebyshev type II

const unsigned int BPF2_COEFF_B[FILTER_ORDER+1] = {0x0BF7, 0xD133, 0x45AF, 0xD133, 0x0BF7};
const unsigned int BPF2_COEFF_A[FILTER_ORDER+1] = {0x1000, 0xCA8B, 0x44B5, 0xD7E5, 0x08F3};
const unsigned int BPF2_SCALE_B = -3;
const unsigned int BPF2_SCALE_A = -3;
 
// min voltage offset level on ADC that can be detected as DTMF
const unsigned int MinLevel = 18;


char SignalActive; // indicator (if input signal exists)
int sample; // temp variable used for reading from ADC
char Key; // detected character
long int f; // detected frequency
unsigned SampleCounter; // indicates the number of samples in circular buffer
unsigned sample_index; // index of next sample
int input[8]; // circular buffer - raw samples (directly after ADC)
int output_f1[8]; // circular buffer - samples after IIR BP filter
int output_f2[8]; // circular buffer - samples after IIR BP filter

unsigned TransitLow, TransitHigh; // counts of transitions (low, high freq)
int sgnLow, sgnHigh; // current signs of low and high freq signal
int KeyCnt; // number of recived DTFM and displayed on LCD


void Estimate(){
unsigned fd;
/* DTMF frequencies:
 1209 Hz 1336 Hz 1477 Hz 1633 Hz
 697 Hz 1 2 3 A
 770 Hz 4 5 6 B
 852 Hz 7 8 9 C
 941 Hz * 0 # D
*/

 // calculating index of lower freq
 f = TransitLow*20000l; // f = No_Of_Transitions*Sampling_Freq [Hz]
 f = f >> 11; // f = f div 2048 = f/2/1024 (2 transitions in each period)

 if (f < 733)
 fd = 1; //Index of Low_freq = 1
 else if (f < 811)
 fd = 2; //Index of Low_freq = 2
 else if (f < 896)
 fd = 3; //Index of Low_freq = 3
 else
 fd = 4; //Index of Low_freq = 4

 // calculating index of higher freq
 f = TransitHigh*20000l; // f = No_Of_Transitions*Sampling_Freq
 f = f >> 11; // f = f/2048 = f/2/1024 (2 transitions in each period)

 if (f<1272)
 fd = fd + 10; // encode Index of higher freq as 10
 else if (f<1406)
 fd = fd + 20; // encode Index of higher freq as 20
 else if (f<1555)
 fd = fd + 30; // encode Index of higher freq as 30
 else
 fd = fd + 40; // encode Index of higher freq as 40

 switch (fd){ // reading of input char from DTMF matrix
 case 11: Key = '1'; break;
 case 12: Key = '4'; break;
 case 13: Key = '7'; break;
 case 14: Key = '*'; break;
 case 21: Key = '2'; break;
 case 22: Key = '5'; break;
 case 23: Key = '8'; break;
 case 24: Key = '0'; break;
 case 31: Key = '3'; break;
 case 32: Key = '6'; break;
 case 33: Key = '9'; break;
 case 34: Key = '#'; break;
 case 41: Key = 'A'; break;
 case 42: Key = 'B'; break;
 case 43: Key = 'C'; break;
 case 44: Key = 'D'; break;
 }
 
 // diplay recived char on second row of LCD
 if(KeyCnt >= 16)
 { // if second row is full erase it and postion cursor at first column
 Lcd_Custom_Cmd(LCD_SECOND_ROW);
 Lcd_Custom_Out_CP(" ");
 Lcd_Custom_Cmd(LCD_SECOND_ROW);
 KeyCnt = 0; // reset recived DTFM signals counter
 }
 Lcd_Custom_Chr_CP(Key); // output recived on LCD
 KeyCnt++; // increment counter

}

void DAC_Output(unsigned valueDAC){
 LATC.CS_PIN = 0; // CS enable for DAC
 // filter output range is 16-bit number; DAC input range is 12-bit number
 valueDAC = valueDAC >> 4;
 // now both numbers are 12-bit but filter output is signed and DAC input is unsigned.
 // half of DAC range 4096/2=2048 is added to correct this
 valueDAC = valueDAC + 2048;
 SPI2BUF = 0x3000 | valueDAC; // write valueDAC to DAC (0x3 is required by DAC)
 while (SPI2STAT.f1) // wait for SPI module to finish sending
 asm nop;
 LATC.CS_PIN = 1; // CS disable for DAC
}

void InitDec(){
 // estimate on 1024 samples for fast DIV
 SampleCounter = 1024; // init low-freq transitions counter
 TransitLow = 0; // init high-freq transitions counter
 TransitHigh = 0; // init input circular buffer (zero-filled)
 Vector_Set(input, 8, 0); // init filtered circular buffer (zero-filled)
 Vector_Set(output_f1, 8, 0); // init filtered circular buffer (zero-filled)
 Vector_Set(output_f2, 8, 0); // points on first element of circular buffer
 sample_index = 0; // current sign is positive
 sgnLow = 0; // current sign is positive
 sgnHigh = 0;
 DAC_Output(0);
}

void ADC1Int() org 0x2A {
 sample = ADCBUF0; // read input ADC signal

 if ((sample > 2048+MinLevel) && !SignalActive) // detecting signal
 {
 SignalActive = 1; // activate estimation algorithm
 InitDec(); // initialize variables
 }

 // since ADC is configured to get samples as intgers
 // mean value of input signal is expected to be located at
 // middle of ADC voltage range
 sample = sample << 4;
 sample = sample-(2048 << 4); // expanding signal to full scale
 // now sample is ready to be filtred

 
 if (SignalActive)
 {
 input[sample_index] = sample; // write sample in circular buffer

 // filter input signal (for low-freq estimation)
 sample = IIR_Radix(BPF1_SCALE_B, BPF1_SCALE_A, BPF1_COEFF_B, BPF1_COEFF_A,
 FILTER_ORDER+1, input, BUFFER_SIZE, output_f1, sample_index);
 DAC_Output(sample); // output filtred signal to DAC for Visual check
 output_f1[sample_index] = sample;

 // transition_Low?
 if ((sample & 0x8000) != sgnLow) // if transition trough 0
 {
 sgnLow = (sample & 0x8000); // save current sign
 ++TransitLow; // increment transition counter
 }

 // filter input signal (for high-freq estimation)
 sample = IIR_Radix(BPF2_SCALE_B, BPF2_SCALE_A, BPF2_COEFF_B, BPF2_COEFF_A,
 FILTER_ORDER+1, input, BUFFER_SIZE, output_f2, sample_index);

 output_f2[sample_index] = sample; // write filtered signal in buffer
 // transition_High?
 if ((sample & 0x8000) != sgnHigh) // if transition
 {
 sgnHigh = (sample & 0x8000);
 ++TransitHigh; // increment transition counter
 }
 
 sample_index = (sample_index+1) & 7; // move pointer on next element
 --SampleCounter; // decrement sample counter
 if (SampleCounter == 0) // if all of 1024 samples are readed
 {
 SignalActive = 0; // deactivate estimation algorithm
 Estimate(); // read estimated character
 DAC_Output(0); // set DAC output to 0
 Delay_ms(80); // wait for next char
 }
 }
 IFS0.f11 = 0; // clear ADC complete IF
}

void Timer1Int() org 0x1A{

 ADCON1.f1 = 1; // ASAM=0 and SAMP=1 begin sampling
 ADCON1.f15 = 1; // start ADC
 IFS0.f3 = 0; // clear Timer1 IF
}

void main(){
 KeyCnt = 0; // set to 0
 SignalActive = 0; // no signal is present
 ADPCFG = 0xFFFF; // configure pins as digital
 Lcd_Custom_Config(&PORTD, 7, 6, 5, 4, &PORTB, 4, 2, 6); // initialize LCD
 Lcd_Custom_Out(1,1,"tone is:"); // print message at first row
 Lcd_Custom_Cmd(Lcd_SECOND_ROW); // position cursor at second row
 LATC.CS_PIN = 1; // set DAC CS to inactive
 LATC.LOAD_PIN = 0; // set DAC LOAD to inactive
 TRISC.LOAD_PIN = 0; // configure DAC LOAD pin as output
 TRISC.CS_PIN = 0; // configure DAC CS pin as output
 // Initialize SPI2 module
 Spi2_Init_Advanced(_SPI_MASTER, _SPI_16_BIT, _SPI_PRESCALE_SEC_1, _SPI_PRESCALE_PRI_1,
 _SPI_SS_DISABLE, _SPI_DATA_SAMPLE_MIDDLE, _SPI_CLK_IDLE_HIGH,
 _SPI_ACTIVE_2_IDLE);

 TRISB.f10 = 1; // configure RB10 pin as input
 ADPCFG = 0xFBFF; // configure RB10 pin as analog
 ADCON1 = 0x00E0; // auto-convert, auto-conversion
 ADCON2 = 0x0000;
 ADCON3 = 0x021A; // sampling time=2*Tad, minimum Tad selected
 ADCHS = 0x000A; // sample input on RB10
 ADCSSL = 0; // no input scan

 // clear interrupt flags
 IFS0 = 0;
 IFS1 = 0;
 IFS2 = 0;
 
 INTCON1 = 0x8000; // disable nested interrupts
 INTCON2 = 0;
 IEC0 = 0x0808; // enable Timer1 and ADC interrupts
 IPC0.f12 = 1; // Timer1 interrupt priority level = 1
 IPC2.f13 = 1; // ADC interrupt priority level = 2

 // timer1 input clock is Fosc/4. Sampling frequency is 20kHz. Timer should
 // raise interrupt every 50 microseconds. PR1 = (Fosc[Hz]/4) / 20000Hz = Fosc[kHz]/(4*20)
 PR1 = Clock_kHz() / 80;
 T1CON = 0x8000; // Enable Timer1

 while(1) // Infinite loop
 asm nop;
}
 

14.2.4 Example 4 – Acceleration sensor

This example shows a possibility of using dsPIC30F4013 or dsPIC6014A in order to realize control of the pointer of a GLCD on the basis of the signal from an acceleration sensor. In this example the use is made of an accelerometer card containing the sensor ADXL330 by Analog Devices. Besides the sensor, the card contains an operational amplifier used as a unit amplifier increasing the output current capacity of the sensor. The sensor measures the acceleration along two axes, X and Y. The offset voltage of the sensor has to be measured during the calibration function. From the accelerometer card, two analogue signals, for the X and Y axes, are fed to the inputs of AN8 and AN9 AD converters (pins PORTB.8 and PORTB.9). After the sampling and conversion, the measured value is presented as the shift of the pointer from the central position on the GLCD. This example is widely applicable for the realization of e.g. joysticks, simple gyroscopes, robot controls or movement detectors.
/* An example of the use of the microcontroller dsPIC30F6014A and Accel Extra Board.
 The example shows how the signal from the sensor is sampled and how the information on the
 accelerations along the X and Y axes are used for controlling the cursor on a GLCD.
 The example also covers the calibration of the sensor (determination of zeroG
 and 1G values for X and Y axes). Pin RC1 is used as user input. Pull-down PORTC and
 put button jumper in Vcc position. */


// --- GLCD Messages ---
const char msg1[] = "Put board to pos ";
const char msg2[] = "and press RC1";

// Global variables
signed int zeroG_x, zeroG_y; // zero gravity values
signed int oneG_x, oneG_y; // 1G values
signed int meas_x, meas_y; // measured values
signed int box_x, box_y; // variables for drawing box on GLCD
char positionNo; // variable used in text messages
char text[21]; // variable used for text messages

void Init() {
 ADPCFG = 0xFCFF; // configure AN8(RB8) and AN9(RB9) as analog pins
 TRISB.F8 = 1; // configure RB8 and RB9 as input pins
 TRISB.F9 = 1;
 Glcd_Init_DsPicPro3(); // init GLCD for dsPICPRO3 board
 // Note: GLCD/LCD Setup routines are in the setup library files located in the Uses folder
 // These routines will be moved into AutoComplete in the future.
 Glcd_Set_Font(FontSystem5x8, 5, 8, 32); // set GLCD font
 Glcd_Fill(0); // clear GLCD
 TRISC = 0x02; // pin PORTC.1 is input for calibration
 positionNo = 1; // variable used in text messages
}

void DoMeasureXY() {
 meas_x = Adc_Read(8); // measure X axis acceleration
 meas_y = Adc_Read(9); // measure Y axis acceleration
}

void DrawPointerBox() {
 float x_real, y_real;

 x_real = (float)(meas_x-zeroG_x)/(oneG_x-zeroG_x); // scale [-1G..1G] to [-1..1]
 x_real = x_real * 64; // scale [-1..1] to [-64..64]
 x_real = x_real + 64; // scale [-64..64] to [0..128]
 
 y_real = (float)(meas_y-zeroG_y)/(oneG_y-zeroG_y); // scale [-1G..1G] to [-1..1]
 y_real = y_real * 32; // scale [-1..1] to [-32..32]
 y_real = y_real + 32; // scale [-32..32] to [0..64]
 
 // convert reals to integers
 box_x = (int)x_real;
 box_y = (int)y_real;
 
 // force x and y to range [0..124] and [0..60] because of Glcd_Box parameters range
 if (box_x>124) box_x=124;
 if (box_x<0) box_x=0;
 if (box_y>60) box_y=60;
 if (box_y<0) box_y=0;
 
 Glcd_Box(box_x, box_y, box_x+3, box_y+3, 2); // draw box pointer, color=2(invert ecah dot)
}

void ErasePointerBox() {
 Glcd_Box(box_x, box_y, box_x+3, box_y+3, 2); // draw inverted box at the same position
 // (erase box)
}

// --- Calibration procedure determines zeroG and 1G values for X and Y axes ---//
void DoCalibrate() {
// 1) Put the Accel board in the position 1 : PARALLEL TO EARTH'S SURFACE
// to measure Zero Gravity values for X and Y
 strcpy(text, msg1);
 text[17] = positionNo + 48;
 Glcd_Write_Text(text,5,1,1);
 positionNo++;
 strcpy(text, msg2);
 Glcd_Write_Text(text,5,20,1);
 while (PORTC.F1 == 0) ; // wait for user to press RC1 button
 DoMeasureXY();
 zeroG_x = meas_x; // save Zero Gravity values
 zeroG_y = meas_y;
 Delay_ms(1000);

// 2) Put the Accel board in the position 2 : X AXIS IS VERTICAL, WITH X LABEL UP
// to measure the 1G X value
 strcpy(text, msg1);
 text[17] = positionNo + 48;
 Glcd_Write_Text(text,5,1,1);
 positionNo++;
 strcpy(text, msg2);
 Glcd_Write_Text(text,5,20,1);
 while (PORTC.F1 == 0) ; // wait for user to press RC1 button
 DoMeasureXY();
 oneG_x = meas_x; // save X axis 1G value
 Delay_ms(1000);
 
// 3) Put the Accel board in the position 3 : Y AXIS IS VERTICAL, WITH Y LABEL UP
// to measure the 1G Y value
 strcpy(text, msg1);
 text[17] = positionNo + 48;
 Glcd_Write_Text(text,5,1,1);
 positionNo++;
 strcpy(text, msg2);
 Glcd_Write_Text(text,5,20,1);
 while (PORTC.F1 == 0) ; // wait for user to press RC1 button
 DoMeasureXY();
 oneG_y = meas_y; // save Y axis 1G value
 Delay_ms(1000);
}


void main() {
 Init(); // initialization

 DoCalibrate(); // calibration
 
 Glcd_Fill(0); // clear GLCD
 Glcd_H_Line(0, 127, 32, 1); // draw X and Y axes
 Glcd_V_Line(0, 63, 64, 1);
 Glcd_Write_Char('X', 122, 3, 1);
 Glcd_Write_Char('Y', 66, 0, 1);
 
 while (1) { // endless loop
 DoMeasureXY(); // measure X and Y values
 DrawPointerBox(); // draw box on GLCD
 Delay_ms(250); // pause
 ErasePointerBox(); // erase box
 }
}
 

MIKROE

MIKROE is a development tools company dedicated to standardization and time-saving in the embedded industry.

  • About us
  • Success story
  • Contact
  • PressKit
  • Timeline
  • Partners
  • Legal
  • Distributors
  • Legacy Products

SOLUTIONS

  • Click boards™
  • Development boards
  • Mikromedia
  • CODEGRIP
  • NECTO Studio
  • Planet Debug
  • ClickID
  • Click Snap
  • EmbeddedWiki

SUPPORT

  • Helpdesk
  • Forum
  • Libstock
  • Learn
  • Let's Make
  • eBooks
  • Premium TS
  • Design service
  • Product Customization
  • Contract Manufacturing

STANDARD

  • mikroBUS™
  • mikroSDK
  • SiBRAIN
  • DISCON

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano tržište. Da li želite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano tržište. Da li želite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Daily product releases, special offers, and more

  • FOLLOW US:

  • instagram
  • linkedin
  • facebook
  • github
  • newsletter
  • youtube
  • twitter twitter

Join us

Pridruži nam se

Careers
Internship
Posao
Praksa
Copyright© 2025 MikroElektronika d.o.o.

Privacy