MikroElektronika white logo
  • Products
    • Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • NECTO
      • NECTO Studio
    • Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • My profile
  • Privacy settings
  • Activity
  • Sign out

Your shoppingcart is empty.
Continue shopping.

MikroElektronika white logo
  • Products
    • click boards icon Click Boards
      • Wireless Connectivity
        • GPS/GNSS
        • GSM/LTE
        • LTE IoT
        • BT/BLE
        • WiFi
        • RFID/NFC
        • GSM+GPS
        • 6LoWPAN
        • ZigBee
        • UWB
        • SigFox
        • Sub-1 GHz Transceievers
        • 2.4 GHz Trancevers
        • LoRa
        • WiFi+BLE
      • Sensors
        • Biometrics
        • Gas
        • Magnetic
        • Motion
        • Optical
        • Pressure
        • Proximity
        • Temperature & humidity
        • Current sensor
        • Miscellaneous
        • Environmental
        • Force
        • Inductance
        • RF meter
        • Click Shields
        • Click Bundles
      • Interface
        • Adapter
        • CAN
        • Port expander
        • RS485
        • USB
        • 1-Wire
        • RS232
        • Ethernet
        • LIN
        • PWM
        • Current
        • DALI
        • I2C
        • Fiber optics
        • SPI
        • DMX
        • CXPI
        • Click Shields
        • Click Bundles
      • Display & LED
        • LED Drivers
        • LED Matrix
        • LED Segment
        • OLED
        • LCD
        • TFT
        • Click Shields
        • Click Bundles
      • Miscellaneous
        • Relay
        • Optocoupler
        • ID
        • Proto
        • Encryption
        • Click Shields
        • Click Bundles
      • Mixed Signal
        • ADC
        • Measurements
        • DAC
        • Digital potentiometer
        • ADC-DAC
        • Click Shields
        • Click Bundles
      • Storage
        • EEPROM
        • FLASH
        • FRAM
        • microSD
        • MRAM
        • SRAM
        • EERAM
        • ReRAM
        • DRAM
        • Click Shields
        • Click Bundles
      • Motor Control
        • Brushed
        • Brushless
        • Servo
        • Stepper
        • Click Shields
        • Click Bundles
      • Audio & Voice
        • Amplifier
        • Microphone
        • Speakers
        • Signal Processing
        • Speech recognition
        • FM
        • MP3
        • Click Shields
        • Click Bundles
      • HMI
        • Capacitive
        • Pushbutton/Switches
        • Potentiometers
        • Rotary encoder
        • Haptic
        • Fingerprint
        • Click Shields
        • Click Bundles
      • Clock & Timing
        • RTC
        • Clock generator
        • Click Shields
        • Click Bundles
      • Power Management
        • Battery charger
        • Boost
        • Buck
        • Linear
        • Buck-Boost
        • Wireless Charging
        • Power Switch
        • USB-C PD
        • Click Shields
        • Click Bundles
      • Click Bundles
      • Click Shields
    • necto icon NECTO
      • NECTO Studio
    • compilers icon Compilers
      • PIC
        • C
          • NECTO Studio
          • mikroC PRO for PIC
        • Basic
          • mikroBasic PRO for PIC
        • Pascal
          • mikroPascal PRO for PIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • dsPIC/PIC24
        • C
          • NECTO Studio
          • mikroC PRO for dsPIC
        • Basic
          • mikroBasic PRO for dsPIC
        • Pascal
          • mikroPascal PRO for dsPIC
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • PIC32
        • C
          • NECTO Studio
          • mikroC PRO for PIC32
        • Basic
          • mikroBasic PRO for PIC32
        • Pascal
          • mikroPascal PRO for PIC32
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • ARM
        • C
          • NECTO Studio
          • mikroC PRO for ARM
        • Basic
          • mikroBasic PRO for ARM
        • Pascal
          • mikroPascal PRO for ARM
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual TFT AI
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • AVR
        • C
          • NECTO Studio
          • mikroC PRO for AVR
        • Basic
          • mikroBasic PRO for AVR
        • Pascal
          • mikroPascal PRO for AVR
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • FT90x
        • C
          • mikroC PRO for FT90x
        • Basic
          • mikroBasic PRO for FT90x
        • Pascal
          • mikroPascal PRO for FT90x
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
      • 8051
        • C
          • mikroC PRO for 8051
        • Basic
          • mikroBasic PRO for 8051
        • Pascal
          • mikroPascal PRO for 8051
        • Additional Software
          • CODEGRIP WiFi license
          • CODEGRIP SSL license
          • Visual TFT
          • Visual GLCD
          • Package Manager
          • mikroBootloader
          • CAN calculator
          • GLCD Font Creator
          • Timer Calculator
          • MikroPlot
    • dev boards icon Dev Boards
      • PIC (8-bit)
        • 8th Generation
          • Fusion for PIC v8
          • EasyPIC PRO v8
          • EasyPIC PRO v8 over USB-C
          • EasyPIC v8
          • EasyPIC v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC PRO v7a
          • PICPLC16 v7a
          • EasyPIC v7a
          • EasyPIC PRO v7
          • EasyPIC v7
        • 6th Generation
          • PICPLC16 v6
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
          • EasyPIC v8 PIC24/dsPIC33
          • EasyPIC v8 for dsPIC30
          • EasyPIC v8 for dsPIC30 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
          • EasyPIC v7 for dsPIC30
        • 6th Generation
          • Easy24-33 v6
      • PIC32 (32-bit)
        • 8th Generation
          • Fusion for PIC32
          • Fusion for PIC32 over USB-C
          • Fusion for PIC v8
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyPIC Fusion v7
      • ARM (32-bit)
        • 8th Generation
          • Fusion for ARM v8
          • Fusion for ARM v8 over USB-C
          • Fusion for STM32 v8
          • Fusion for STM32 over USB-C
          • Fusion for KINETIS v8
          • Fusion for Kinetis v8 over USB-C
          • Fusion for TIVA v8
          • Fusion for TIVA v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyMx PRO v7a STM32
          • EasyMx PRO v7 STM32
          • EasyMx PRO v7 Tiva
      • AVR (8-bit)
        • 8th Generation
          • EasyAVR v8
          • EasyAVR PRO v8
          • EasyAVR PRO v8 over USB-C
          • UNI-DS v8
          • UNI-DS v8 over USB-C
        • 7th Generation
          • EasyAVR v7
        • 6th Generation
          • AVRPLC16 v6
      • 8051 (8-bit)
        • 7th generation
          • BIG8051
        • 6th Generation
          • Easy8051 v6
      • PSoC (8-bit)
        • 6th Generation
          • UNI-DS6 Development System
      • RISC-V (32bit)
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
      • Universal Boards
        • 8th Generation
          • UNI-DS v8
          • UNI-DS v8 over USB-C
          • Fusion for PIC v8
          • Fusion for ARM v8
        • 7th Generation
          • EasyPIC Fusion v7
        • 6th Generation
          • UNI-DS6
          • mikroBoard for PIC 80-pin
          • mikroBoard for AVR
          • mikroBoard for dsPIC
          • mikroBoard for PSoC
          • mikroBoard for 8051
          • mikroBoard for PIC 40-pin
          • mikroBoard for ARM
          • mikroBoard for ARM 144-pin
      • IoT - Wearable
        • Hexiwear
          • Hexiwear
          • Hexiwear Power User Pack
          • Hexiwear Docking Station
          • Hexiwear Battery Pack
          • Hexiwear Color Pack
          • Hexiwear Workstation
      • Analog Boards
        • 7th Generation
          • Analog System Lab Kit PRO
    • starter boards icon Starter Boards
      • PIC (8-bit)
        • Clicker
          • PIC clicker
        • Clicker 2
          • Clicker 2 for PIC18FJ
          • Clicker 2 for PIC18FK
        • Clicker 4
          • Clicker 4 for PIC18F
          • UNI Clicker
        • Ready
          • Ready for PIC Board
          • Ready for PIC (DIP28)
          • PIC-Ready2 Board
          • MMC Ready Board
        • StartUSB
          • StartUSB for PIC
      • dsPIC/PIC24 (16-bit)
        • Clicker 2
          • Clicker 2 for PIC24
          • Clicker 2 for dsPIC33
        • Clicker 4
          • UNI Clicker
        • Ready
          • dsPIC-Ready1 Board
          • dsPIC-Ready2 Board
          • DsPIC-Ready3 Board
          • dsPIC-Ready4 Board
      • PIC32 (32-bit)
        • Clicker
          • PIC32MX clicker
          • 6LoWPAN Clicker
          • PIC32MZ clicker
        • Clicker 2
          • Clicker 2 for PIC32MX
          • Clicker 2 for PIC32MZ
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-32 Board
          • MINI-32 for PIC32MZ
        • Flip&Click
          • Flip&Click PIC32MZ
      • ARM (32-bit)
        • Clicker
          • RA4M1 Clicker
          • Kinetis Clicker
          • MSP432 Clicker
          • CEC1702 clicker
          • CEC1302 Clicker
          • STM32 M4 clicker
        • Clicker 2
          • Clicker 2 for STM32
          • Clicker 2 for Kinetis
          • Clicker 2 for CEC1702
          • Clicker 2 for MSP432
          • Clicker 2 for CEC1302
          • Clicker 2 for PSoC 6
        • Clicker 4
          • Clicker 4 for STM32F745VG
          • Clicker 4 for STM32F4
          • Clicker 4 for TMPM3H
          • Clicker 4 for TMPM4K
          • Clicker 4 for STM32
          • UNI Clicker
        • MINI
          • MINI-M4 for STM32
          • MINI-M4 For Kinetis
          • MINI-M4 for Tiva
          • MINI-M4 for Stellaris
          • MINI-M4 for MSP432
          • MINI-M0 for STM32
        • Flip&Click
          • Flip&Click SAM3X
      • AVR (8-bit)
        • Clicker 4
          • UNI Clicker
        • MINI
          • MINI-AT Board - 3.3V
          • MINI-AT Board - 5V
        • Ready
          • Ready for AVR Board
          • Ready For XMEGA
          • mikroXMEGA Board
          • AVR-Ready2 Board
        • StartUSB
          • StartUSB for AVR
      • 8051 (8-bit)
        • Ready
          • 8051-Ready Board
      • FT90x (32-bit)
        • Clicker 2
          • Clicker 2 for FT90x
      • Miscellaneous
        • USB
          • USB Wizard
          • Quail
          • FlowPaw Kit
      • Universal Boards
        • Clicker 4
          • UNI Clicker
    • prog-debug icon Prog-Debug
      • PIC (8-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC
      • dsPIC/PIC24 (16-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
        • mikroProg
          • mikroProg for dsPIC
      • PIC32 (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
          • CODEGRIP for PIC
          • CODEGRIP for PIC USB-C
        • mikroProg
          • mikroProg for PIC32
      • ARM (32-bit)
        • CODEGRIP
          • UNI CODEGRIP
          • UNI CODEGRIP USB-C
          • CODEGRIP for ARM
          • CODEGRIP for ARM USB-C
          • CODEGRIP for STM32
          • CODEGRIP for KINETIS
          • CODEGRIP for Tiva
          • CODEGRIP for Tiva USB-C
        • mikroProg
          • mikroProg for STM32
          • mikroProg for Tiva
          • mikroProg for Kinetis
          • mikroProg for CEC
          • mikroProg for MSP432
          • mikroProg for PSoC 5LP
      • AVR (8-bit)
        • CODEGRIP
          • CODEGRIP for AVR
          • CODEGRIP for AVR - USB-C
          • UNI CODEGRIP
          • UNI CODEGRIP - USB-C
        • mikroProg
          • mikroProg for AVR
      • 8051 (8-bit)
        • mikroProg
          • mikroProg for 8051
      • FT90x (32-bit)
        • mikroProg
          • mikroProg for FT90x
    • smart displays icon Smart Displays
      • 2.8"
        • ARM (32-bit)
        • AVR (8-bit)
        • dsPIC/PIC24 (16-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 3.5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 4.3"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC (8-bit)
        • PIC32 (32-bit)
      • 5"
        • ARM (32-bit)
        • FT90x (32-bit)
        • PIC32 (32-bit)
      • 7"
        • ARM (32-bit)
        • FT90x (32-bit)
    • mcu cards icon MCU Cards
      • PIC (8-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • dsPIC/PIC24 (16-bit)
        • 8th Generation
        • 7th Generation
        • 6th Generation
      • PIC32 (32-bit)
        • 8th Generation
        • 7th Generation
      • ARM (32-bit)
        • 8th Generation
        • 7th Generation
      • AVR (8-bit)
        • 8th Generation
      • RISC-V (32bit)
        • 8th Generation
    • accessories icon Accessories
      • TFT Displays
      • LCD Displays
      • LED Displays
      • E-Paper Displays
      • Sensors
      • Headers and Connectors
      • Wire Jumpers and Cables
      • Antennas
      • Batteries
      • RFID/NFC
      • Proto
      • Motors
      • Storage
      • Power
      • Adapters
      • Interface
      • Input/Output
      • Miscellaneous
      • FANware
      • MCUs
      • Books
    • kits icon Kits
      • PIC Kits
      • dsPIC/PIC24 Kits
      • PIC32 Kits
      • ARM Kits
      • AVR Kits
      • FT90x Kits
      • 8051 Kits
  • Shop
  • EmbeddedWiki
  • Support
    • Helpdesk
    • Contact us
    • Forum
    • LibStock
    • Learn
    • Let's make
    • Books
  • Services
    • Planet Debug
    • Design Service
    • Product Customization
    • Contract Manufacturing
    • Premium Technical Support
  • News
  • Price :

    More info
Reset filter
  • 0
Authentication
Account

Create account

Forgot your password?

Your cart is empty !
View cart ( )
  1. Home
  2. ebooks
  3. PIC Microcontrollers - Programming in Basic
  4. input-output-ports
MikroElektronika books

3.3 Input/Output Ports

 

One of the most important merits of the microcontroller is a number of input/output pins which enable it to be connected to peripheral modules. There are in total 35 general-purpose I/O pins provided on the PIC16F887, which is quite enough for most applications.

In order to synchronize the operation of I/O ports with the internal 8-bit organization of the microcontroller, they are, similar to registers, grouped into five ports denoted by letters A, B, C, D and E. All I/O ports have several features in common:
  • To save more space on the board, all I/O pins are multifunctional. However, they can be assigned only one function at the same time.
  • Every port is accompanied by the corresponding TRIS register: TRISA, TRISB, TRISC etc. which determines the performance, but not the contents of the port bits. By clearing any bit of the TRIS register (bit=0), the corresponding port pin is configured as an output. Similarly, by setting any bit of the TRIS register (bit=1), the corresponding port pin is configured as an input. This rule is easy to remember 0 = Output, 1 = Input.
pic-microcontrollers-programming-in-basic-chapter-03-image-35

PORTA and TRISA register

Port PORTA is an 8-bit wide, bidirectional port. Bits of the TRISA register control the PORTA pins, i.e. whether they will act as digital inputs or outputs:
pic-microcontrollers-programming-in-basic-chapter-03-image-36
Similar to the TRISA register bits which determine which of the pins are to be configured as inputs and which ones as outputs, the appropriate bits of the ANSEL register determine whether PORTA pins are to be configured as analog inputs or digital inputs/outputs. RA0 = AN0 (determined by the ANS0 bit of the ANSEL register) RA1 = AN1 (determined by the ANS1 bit of the ANSEL register) RA2 = AN2 (determined by the ANS2 bit of the ANSEL register) RA3 = AN3 (determined by the ANS3 bit of the ANSEL register) RA5 = AN4 (determined by the ANS4 bit of the ANSEL register) Each bit of this port is assigned an additional function related to some of the built-in peripheral modules. This chapter covers only the RA0 pin’s additional function which is related to the PORTA and ULPWU unit, whereas additional function of other pins will be described in later chapters. Let's do it in mikroBasic...
' The PORTA.2 pin is configured as a digital input. All other PORTA pins are digital ... outputs
ANSEL = ANSELH = 0 ' All I/O pins are configured as digital
PORTA = 0 ' All PORTA pins are cleared
TRISA = %00000100 ' All PORTA pins except PORTA.2 are configured as outputs
...

ULPWU UNIT

The microcontroller is commonly used in independent battery powered devices which operate periodically. Typical examples are thermometers, fire detection sensors and the like. Minimum power consumption is one of the priorities here. As a reduction in clock frequency causes the power consumption to be reduced, one of the most convenient solutions to this issue is to slow down the clock, that is to say to use 32KHz quartz crystal instead of 20MHz.
Setting the microcontroller to sleep mode is a step further in the same direction. Here we come to another issue - how to wake up the microcontroller and set it to normal mode? Obviously, it is necessary to somehow provide an external signal to change the logic state of some pin. The only way to do it is by means of additional electronics, which on the other hand causes higher power consumption of the entire device...
The ideal solution would be if the microcontroller could wake up periodically by itself. The circuit which makes it possible is shown in figure on the left.
pic-microcontrollers-programming-in-basic-chapter-03-image-37
This is how this circuit operates: A pin is configured as an output and a logic one (1) is brought to it. This causes the capacitor to be charged. Immediately after this, the same pin is configured as an input. The change of logic state will cause an interrupt and the microcontroller will enter the Sleep mode. All that’s left now is to wait for the capacitor to be discharged by the leakage current flowing out through the input pin. After that an interrupt takes place and the microcontroller proceeds with the program execution in normal mode. The whole procedure is periodically repeated.
Theoretically, this is a perfect solution. The problem is that all pins able to cause an interrupt in this manner are digital and have relatively high leakage current when their voltage is not close to limits Vdd (1) or Vss (0). In this case, the condenser is discharged for a short period of time since the current amounts to several hundreds of microamperes. This is why a low-consumption ULPWU circuit, capable of registering slow voltage drops, was designed. Its output generates an interrupt, while its input is connected to the RA0 pin on the microcontroller. Refer to figure on the left, R=200 ohms, C=1nF, discharge time is approximately 30mS, while a total power consumption of the microcontroller is 1000 times lower (several hundreds of nanoamperes).
pic-microcontrollers-programming-in-basic-chapter-03-image-38

PORTB and TRISB registers

Port PORTB is an 8-bit wide, bidirectional port. Bits of the TRISB register determine the function of its pins.
pic-microcontrollers-programming-in-basic-chapter-03-image-39
Similar to port PORTA, a logic one (1) on the TRISB register bit configures the appropriate port PORTB pin as an input and vice versa. Six pins of this port can act as analog inputs (AN). Bits of the ANSELH register determine whether these pins are to be configured as analog inputs or digital inputs/outputs: RB0 = AN12 (determined by the ANS12 bit of the ANSELH register) RB1 = AN10 (determined by the ANS10 bit of the ANSELH register) RB2 = AN8 (determined by the ANS8 bit of the ANSELH register) RB3 = AN9 (determined by the ANS9 bit of the ANSELH register) RB4 = AN11 (determined by the ANS11 bit of the ANSELH register) RB5 = AN13 (determined by the ANS13 bit of the ANSELH register) Each port PORTB pin is assigned an additional function related to some of the built-in peripheral modules, which will be explained later. The following features makes this port diffierent from other ports, hence its pins are commonly used:
  • All the port PORTB pins have built in pull-up resistors, which makes them ideal for connecting to push buttons (keyboard), switches or optocouplers. In order to connect these resistors to the PORTB pins, the appropriate bit of the WPUB register should be set.*
pic-microcontrollers-programming-in-basic-chapter-03-image-40
Having a high resistance (several tens of kiloohms), these ‘virtual’ resistors do not affect pins configured as outputs, but serve as a useful complement when they act as inputs. Otherwise, without these resistors attached the input pins would act as floating due to their high input resistance.
pic-microcontrollers-programming-in-basic-chapter-03-image-41
* Apart from the bits of the WPUB register, there is another bit affecting the installation of all pull-up resistors. It is the RBPU bit of the OPTION_REG register.
  • Port PORTB can be used as an interrupt source. If enabled, each port PORTB bit configured as an input may cause an interrupt by changing its logic state. In order to enable pins to cause an interrupt, the appropriate bit of the IOCB register should be set.
pic-microcontrollers-programming-in-basic-chapter-03-image-42
Owing to these features, the port PORTB pins are commonly used for checking push buttons on the keyboard as they are able to unerringly register any button pressure. There is no need to ‘scan’ these inputs all the time, therefore. When the X, Y and Z pins are configured as outputs set to logic one (1), it is only necessary to wait for an interrupt request to arrive after pressing a button. By combining zeros and ones on these outputs it is checked which push button is pressed. Refer to figure below:
pic-microcontrollers-programming-in-basic-chapter-03-image-43
Let's do it in mikroBasic...
'The PORTB.1 pin is configured as a digital input. Any change of its logic state will cause
'an interrupt. It also has a pull-up resistor. All other PORTB pins are digital ... outputs.

ANSEL, ANSELH = 0 ' All I/O pins are configured as digital
PORTB = 0 ' All PORTB pins are cleared
TRISB = %00000010 ' All PORTB pins except PORTB.1 are configured as outputs
OPTION_REG.RBPU = 0 ' Pull-up resistors are enabled
WPUB.1 = 1 ' Pull-up resistor is connected to the PORTB.1 pin
IOCB.1 = 1 ' The PORTB.1 pin may cause an interrupt on logic state change
INTCON.RBIE = 1 ' Interrupt on PORTB change is enabled
INTCON.GIE = 1 ' All unmasked interrupts are enabled
...

PIN RB0/INT

The RB0/INT pin is the only ‘true’ external interrupt source. It can be configured so as to respond to signal raising edge (zero-to-one transition) or signal falling edge (one-to-zero transition). The INTEDG bit of the OPTION_REG register is used as a signal selector.

RB6 AND RB7 PINS

The PIC16F887 is not provided with special pins for programming. Instead, this function is assigned to I/O pins. As a matter of fact, the port PORTB pins are used for clock (RB6) and data transfer (RB7) during programming. In addition, it is necessary to provide the power supply voltage Vdd (5V) as well as the appropriate voltage Vpp (12-14V) for the FLASH memory programming. The MCLR pin is used for this purpose. You don’t have to think of all these details, nor which one of these voltages is to be applied first since the programmer takes care of that. It enables the program to be loaded into the microcontroller even when it is soldered onto the target device. The loaded program can normally be modified in the same manner. This process is called ICSP (In-Circuit Serial Programming). In order to make advantage of this option, it is necessary to plan ahead. It means that it is necessary to install a miniature 5-pin connector on the target device so as to enable the microcontroller to be provided with necessary programming voltages. In order to prevent these voltages from interfering with the operation of other modules connected to the microcontroller pins, it is necessary to isolate them from the board during the process of programming using resistors or jumpers.
pic-microcontrollers-programming-in-basic-chapter-03-image-45pic-microcontrollers-programming-in-basic-chapter-03-image-44
As you can see, voltages applied to the pins on the programmer's socket are the same as those used during the ICSP programming

PORTC and TRISC register

Port PORTC is an 8-bit wide, bidirectional port. Bits of the TRISC register determine the function of its pins. Similar to other ports, a logic one (1) applied to the TRISC register configures the appropriate port PORTC pin as an input.
pic-microcontrollers-programming-in-basic-chapter-03-image-46
All additional functions of the port PORTC bits will be described later.

PORTD and TRISD register

Port PORTD is an 8-bit wide, bidirectional port. Bits of the TRISD register determine the function of its pins. A logic one (1) applied to the TRISD register configures the appropriate port PORTD pin as an input.
pic-microcontrollers-programming-in-basic-chapter-03-image-47

PORTE and TRISE register

Port PORTE is a 4-bit wide, bidirectional port. The TRISE register’s bits determine the function of its pins. Similar to other ports, a logic one (1) applied to the TRISE register configures the appropriate port PORTE pin as an input. The exception is the RE3 pin which is always configured as an input.
pic-microcontrollers-programming-in-basic-chapter-03-image-48
Similar to ports PORTA and PORTB, three pins can be configured as analog inputs in this case. The ANSEL register bits determine whether a pin will act as an analog input (AN) or a digital input/output: RE0 = AN5 (determined by the ANS5 bit of the ANSEL register); RE1 = AN6 (determined by the ANS6 bit of the ANSEL register); and RE2 = AN7 (determined by the ANS7 bit of the ANSEL register). Let's do it in mikroBasic...
' The PORTE.0 pin is configured as an analog input while another three pins of the same
' p.o.r.t are configured as digital.
ANSEL = %00100000 ' The PORTE.0 pin is configured as analog
ANSELH = 0 ' All other I/O pins are configured as digital
TRISE = %00000001 ' All PORTE pins except PORTE.0 are configured as outputs
PORTE = 0 ' All PORTE pins are cleared
...

ANSEL and ANSELH register

The ANSEL and ANSELH registers are used to configure the input mode of an I/O pin as analog or digital.
pic-microcontrollers-programming-in-basic-chapter-03-image-49
The rule to follow reads: To configure a pin as an analog input, the appropriate bit of the ANSEL or ANSELH registers must be set (1). To configure a pin as a digital input/output, the appropriate bit must be cleared (0). The state of the ANSEL register bits doesn’t affect digital output functions. The result of any attempt to read a port pin configured as an analog input will be 0.
pic-microcontrollers-programming-in-basic-chapter-03-image-50

In Short

You will probably never write a program which doesn't use ports, so the effort you make to learn all about them will definately pay off. Also, they seem to be the simplest modules within the microcontroller. This is how they are used:
  • When designing a device, select a port to be used by the microcontroller for communication with peripheral modules. If you use only digital inputs/outputs, select any port you want. If you intend to use some of the analog inputs, select the appropriate ports supporting such configuration (AN0-AN13).
  • Each port pin may be configured either as an input or an output. Bits of the TRISA, TRISB, TRISC, TRISD and TRISE registers determine how the pins of the following ports PORTA, PORTB, PORTC, PORTD and PORTE will act. As simple as that.
  • If you use some of the analog inputs, first it is necessary to set appropriate bits of the ANSEL and ANSELH registers at the beginning of the program.
  • If you use switches and push buttons as input signal source, it is recommended to con nect them to the port PORTB pins because they have pull-up resistors connected. The use of these resistors is enabled by the RBPU bit of the OPTION_REG register, whereas individual resistors are enabled by bits of the WPUB register.
  • It is usually necessary to respond as soon as input pins change their logic state. It doesn’t mean that you have to write a program to check pins’ logic state all the time. Just connect them to the PORTB pins and enable an interrupt to occur on every voltage change. Bits of the IOCB and INTCON registers are in charge of that.
 

MIKROE

MIKROE is a development tools company dedicated to standardization and time-saving in the embedded industry.

  • About us
  • Success story
  • Contact
  • PressKit
  • Timeline
  • Partners
  • Legal
  • Distributors
  • Legacy Products

SOLUTIONS

  • Click boards™
  • Development boards
  • Mikromedia
  • CODEGRIP
  • NECTO Studio
  • Planet Debug
  • ClickID
  • Click Snap
  • EmbeddedWiki

SUPPORT

  • Helpdesk
  • Forum
  • Libstock
  • Learn
  • Let's Make
  • eBooks
  • Premium TS
  • Design service
  • Product Customization
  • Contract Manufacturing

STANDARD

  • mikroBUS™
  • mikroSDK
  • SiBRAIN
  • DISCON

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano tržište. Da li želite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Prodavnica za inostrano tržište

Nalazite se na prodavnici za inostrano tržište. Da li želite da Vas odvedemo na prodavnicu koja je namenjena za Srbiju?

Daily product releases, special offers, and more

  • FOLLOW US:

  • instagram
  • linkedin
  • facebook
  • github
  • newsletter
  • youtube
  • twitter twitter

Join us

Pridruži nam se

Careers
Internship
Posao
Napravi Click
Praksa
Copyright© 2025 MikroElektronika d.o.o.

Privacy